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Abstract

Ž . Ž .A practical method of predicting state-of-charge SOC and state-of-health SOH of battery systems has been developed and tested for
several systems. The method involves the use of fuzzy logic mathematics to analyze data obtained by impedance spectroscopy andror
coulomb counting techniques. Fuzzy logic provides a powerful means of modeling complex, non-linear systems without the need for
explicit mathematical models. New detailed impedance date has been obtained on the discharge performance of primary lithiumrsulfur
dioxide cells. Earlier data, obtained by Rutgers co-workers on nickelrmetal hydride and other systems, have been reviewed and
re-interpreted using fuzzy logic methodology. Devices are being developed for several systems, which will predict the SOC and SOH of
batteries without the need to know their previous discharge andror cycling history. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

The predicted available capacity of batteries, tradition-
Žally based on the chemical oxidation state state-of-charge

.—SOC of the active materials, is very important informa-
tion to users of primary and secondary battery systems. It
has a special significance in the cases of intermittent
discharge or long shelf-life applications.

Many laboratory methods and several commercial de-
vices have been reported and reviewed to predict this SOC
status.

A more powerful performance indicator is the state-of-
Ž .health SOH status. This relates to the ability of a

Ž .cellrbattery to perform a particular discharge or charge
function at an instantaneous moment in the charge–dis-
charge–stand-cycle regime.

The need for non-invasive and instantaneous methods
for the determination of SOC and SOH became dominant
with remote andror sealed battery technology, in combina-
tion with electrical systems requiring high rate pulse per-
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formance. Three generic techniques evolved: coulomb
Ž .counting, voltage or current pulse response, and

impedance measurement.
A useful means of studying processes in electrochemi-

Žcal systems including biological processes, batteries, and
.capacitors is to make impedance measurements over a

wide range of frequencies, usually referred to as electro-
Ž .chemical impedance spectroscopy EIS . Recently,

impedance data on many practical battery designs have
been reported. The determinations of SOC and SOH of
secondary lead-acid and nickel–cadmium batteries were

w xreviewed by Huet 1 in 1998. His detailed article presents
the underlying chemical and electrochemical theory and
includes data on mid-size commercial batteries. Also note-

w xworthy is the data and modeling of lead-acid 2,3 ,
w xnickel–cadmium, nickel–metal hydride 4 secondary bat-

w xteries, and some primary lithium systems 5,6 , using EIS,
carried out by several thesis students and staff scientists at
Rutgers University over a period of more than 10 years.
These projects, and other early work, relied on complex,
non-linear, least squares algorithms for the extraction of
equivalent circuit parameters.
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Extensive data on a lithium–iodine implanted medical
battery design was presented by Schmidt and Skarstad
w x7,8 at the 1997 International Power Sources Symposium.
EIS was utilized as a technique for monitoring aging
effects in nickelrhydrogen and nickelrmetal hydride bat-
teries on aerospace qualification cycling tests by Smith et

w xal. 9 .
In our more recent work, the Fuzzy Logic Methodology

w xdeveloped by Singh et al. 10–13 has been applied to the
interpretation of new and old data, and prototype hardware
meters have been fabricated.

An impedance technique and instrument based on con-
ventional data analysis has been developed by Atwater and

w xDratier at Ft. Monmouth 14 . Other early studies at Rut-
w xgers University 15–17 involved characterizing the analy-

Ž .sis of response to current or voltage pulses in nickelriron
and lead-acid batteries in Rutgers data and from the tech-

w xnology reported by Palanisamy et al. 18 . Some of these
early studies related to the capability of electric generating
plants to shut down under battery power. In many applica-
tions, the batteries could not be removed for testing, and a
full-time on-line instantaneous reading of SOH was the
desired goal.

The fuzzy logic method is amenable to determining
battery condition regardless of which of the three classical
techniques of measuring SOC or SOH is employed. It also
simplifies the fabrication of commercial devices, since the
hardware requirements are minimized.

2. Background to fuzzy logic

Data may be categorized by ‘crisp’ or ‘fuzzy’ sets.
Crisp sets categorize data with certainty, e.g., a set of
temperatures between 308C and 408C. With fuzzy sets, a
set in which data can be categorized, is uncertain, e.g., the
temperature is ‘warm’. This linguistic descriptor ‘warm’ is
a subset of a set of all temperatures and is defined by its
membership function. The degree to which an element of
the set ‘temperature’ belongs to the fuzzy subset ‘warm’ is
indicated by a quantity referred to as its ‘degree of mem-

Ž .bership’ or fit fuzzy unit value.
Fig. 1 shows an example of three subsets, defined by

their membership functions, ‘cold’, ‘warm’, and ‘hot’, of
the ‘Universe of Discourse’ set ‘temperature’. The process

Fig. 1. Membership function for temperature.

Fig. 2. A complete fuzzy inference system.

of determining the fit values of the real-valued data is
referred to as ‘fuzzification’ of the data.

A fuzzy system is illustrated in Fig. 2 in which both the
Ž .inputs and outputs are crisp sets real-valued . The fuzzy

w xsystem has four conceptual components 19 : a rule base
describing the relationship between input and output vari-
ables, a database that defines the membership functions for
the input and output variables, a reasoning mechanism that
performs the inference procedure, and a defuzzification
block which transforms the fuzzy output sets to a crisp
Ž .real-valued output. The rules relating the input and the
output variables are written in an ‘if . . . then’ linguistic
format such as ‘if temperature is hot and discharge rate is
high then output is low’.

The membership functions and rule set may be de-
scribed by an expert or may be generated by neural
networks. Unsupervised neural networks can find the ini-
tial rules and membership functions using numerical train-
ing data that describe the input–output relationship. Super-
vised neural networks can fine-tune the rules and member-
ship functions generated by the unsupervised neural net-
works. The additive fuzzy system has been proven to be a
so-called ‘universal approximator’ that can be used for

w xmodeling and control of complex, non-linear systems 20 .
An inference system commonly used to develop fuzzy

models is the Mamdani fuzzy inference system. The Mam-
dani approach was developed in the 1970s and was the
first inference method applied to control systems. The
Mamdani inference procedure is based on max–min com-
position, the defuzzification process is inherently computa-
tionally intensive. The effect of the max combiner on the
output membership functions is to generate an ‘envelope’
of the fired output membership functions. In order to
defuzzify this output set, the centroid of the envelope is
found by integrating over the two-dimensional shape.

Another inference system commonly used is the Stan-
Ž .dard Additive Model SAM . The SAM inference ap-

proach is based on correlation–product inference. This
overcomes the loss of information associated with the
correlation–min inference in the Mamdani inference
method. The additive-combiner also in the SAM makes
defuzzification simpler than the max-combiner of Mam-
dani inference. The additive-combiner also accounts for
the information in the overlap of the fired output sets that
the max-combiner ignores.

A more specific type of SAM is the Sugeno inference.
In the Sugeno approach, the output set consists of piece-
wise linear function of the inputs rather than a fuzzy set.
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This makes the computation of the centroid, to defuzzify
the output, much easier than in the Mamdani approach—the
calculation simply involves taking the weighted average of
a few piece-wise linear functions. In the simplest Sugeno
model, in zero-order, the output is a singleton rather than a
fuzzy set. For example, a typical fuzzy rule in a zero-order
Sugeno model is;

if x is A and y is B , then zsk

where A and B are fuzzy sets and k is a crisply defined
w xconstant 21 . The more general first-order Sugeno model

has rules of the form;

if x is A and y is B , then zspU xqqU yqr

where A and B are fuzzy sets and p, q and r are all
constants.

There are two approaches to optimizing a fuzzy logic
model—supervised and unsupervised learning. By tuning
the input and output membership functions, the fuzzy
system model may be optimized in a squared error sense.
Expert feedback or a neural network algorithm, such as the
back propagation algorithm, may be used to optimize the
fuzzy logic model in supervised learning. In unsupervised
learning, clustering algorithms may be used to find clusters
in the input–output space in which initial membership
functions and rules can be extracted. The system can then
be fine-tuned using a neural network.

In this paper, we present our development of fuzzy
models using both the Mamdani and the first-order Sugeno
approach to model batteries using impedance data. Super-
vised and unsupervised learning techniques will be used to
fine-tune the parameters of the fuzzy system in the case of
the first-order Sugeno model. The fuzzy systems will be
designed and simulated using the commercially available,
high-level programming environment MATLAB and the
Fuzzy Logic Toolbox for MATLAB.

3. Modelling of battery systems

( )3.1. Lithiumrsulfur dioxide cells LirSO2

Preliminary EIS has been performed on primary 1.2 A h
Ž .LirSO cells PCI using a Solartron 1250 frequency2

response analyzer and a PAR 273 Potentiostatrgalvanostat
over the frequency range of 0.65 Hz–65 kHz. The com-

Žmercial software programs Zplot and Coreware Scribner

Table 1
Results from the LirSO experiment2

Cell Lot Discharge Total charge
Ž . Ž .rate mA removed Ah

01 01r91 200 0.793
02 12r90 200 0.8796
03 01r91 50 0.900
04 12r90 50 0.9683

Ž . Ž Y .Fig. 3. a Imaginary component of the impedance Z at 10.3 Hz
Ž . Ž Y .against SOC; b Imaginary component of the impedance Z at 41.01

Ž . Ž Y .Hz against SOC; c Imaginary component of the impedance Z at 4101
Hz against SOC.

.Associates were used to collect the data. In order to
demonstrate the robustness of the combined EIS and fuzzy
logic technique, cells were chosen from two different
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Ž . Y Ž . Y Ž . YFig. 4. a Input 1 membership functions for Z at 10.3 Hz; b Input 2 membership functions for Z at 41.01 Hz; c Input 3 membership functions for Z
at 4101 Hz.

production lots. A total of four cells were measured, two at
Ž .200 mA and two at 50 mA see Table 1 . The last column

in Table 1 indicates the total charge removed from the
cells.

EIS was performed on each cell at successive discharge
intervals of 0.1 A h until a 2 V cut-off was reached. A
high current pulse of 200 mA for 30 s before each
impedance measurement was used to remove the passive
film that has grown on the anode. It is noteworthy that
both cells from the 1r91 lot showed a capacity of ;0.1 A
h less than the 12r90 lot cells at both discharge rates. The
SOC of each cell was calculated based on the percentage
of the actual total charge removed from the cell and not on
the basis of the cell’s nominal capacity.

To make a low-cost, practical SOC meter, unambiguous
correlation between the cell’s impedance at one or two

Ž .frequencies as few frequencies as possible and the cell’s

SOC must be demonstrated. The imaginary component of
the cell impedance at 10.3 Hz, 40.01 Hz, and 4001 Hz vs.
cell SOC is displayed in Fig. 3a–c, respectively. At the
two lower frequencies in Fig. 3a–b all the cell’s imaginary
component of the impedance appears to vary with cell
SOC almost independently of the discharge rate or lot
between 40% and 90% SOC. However, at the lower SOCs
at the lower frequencies, and at the 4 kHz frequency over
the entire SOC range, the data is seen to exhibit more
spread and does not vary monotonically. This type of data
does not yield to simple mathematical analysis but is
well-suited to fuzzy logic modeling.

A 3-input, 1-output, fuzzy logic system based on Sugeno
reasoning was developed to model the relationship be-
tween the imaginary component of the impedance at 10.3
Hz, 41.01 Hz, and 4101 Hz and the SOC of the cell. The
subtractive clustering algorithm was used to develop the

Table 2
Rules for Sugeno-based fuzzy logic system for primary LirSO cells2

Y Y YŽ . Ž . Ž . Ž . Ž .1 If Z @10.3 Hz is in1mf1 and Z @41.01 Hz is in2mf1 and Z @4101 Hz is in3mf1 then SOC is out1mf1
Y Y YŽ . Ž . Ž . Ž . Ž .2 If Z @10.3 Hz is in1mf2 and Z @41.01 Hz is in2mf2 and Z @4101 Hz is in3mf2 then SOC is out1mf2
Y Y YŽ . Ž . Ž . Ž . Ž .3 If Z @10.3 Hz is in1mf3 and Z @41.01 Hz is in2mf3 and Z @4101 Hz is in3mf3 then SOC is out1mf3
Y Y YŽ . Ž . Ž . Ž . Ž .4 If Z @10.3 Hz is in1mf4 and Z @41.01 Hz is in2mf4 and Z @4101 Hz is in3mf4 then SOC is out1mf4
Y Y YŽ . Ž . Ž . Ž . Ž .5 If Z @10.3 Hz is in1mf5 and Z @41.01 Hz is in2mf5 and Z @4101 Hz is in3mf5 then SOC is out1mf5
Y Y YŽ . Ž . Ž . Ž . Ž .6 If Z @10.3 Hz is in1mf6 and Z @41.01 Hz is in2mf6 and Z @4101 Hz is in3mf6 then SOC is out1mf6
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Fig. 5. Error between predicted SOC and measured SOC against mea-
sured SOC.

input membership functions displayed in Fig. 4a–c. The
output membership parameters were optimized using a
least squares fit. The fuzzy rules for the model are de-
scribed in Table 2.

Without prior knowledge of the discharge history of the
cell or the rated capacity of a lot, by measuring the
imaginary component of the impedance at three specific
frequencies, the fuzzy logic model that we developed
predicts the SOC of a primary LirSO cell as displayed in2

Fig. 5. Unlike an average SOC measure, Fig. 6 shows that
the maximum error between the measured SOC and the
model predicted SOC throughout the entire range of mea-
sured SOC is roughly "5%. Therefore, the accuracy of
the model is maintained throughout the entire discharge
cycle of the cell. Although this model has been developed
for a very limited data set, more extensive measurements
are being taken to determine the model’s robustness over a
larger data set.

3.2. Nickelrmetal hydride cells

Impedance data on nickelrmetal hydride cells were
w xobtained from the thesis of Weckesser 4,22 . The

Ž . Ž . YFig. 6. Measured xx and model-predicted oo SOC against Z at 10.3
Ž . Ž . Ž .Hz for cell 1 bottom left , cell 2 bottom right cell 3 top left , and cell

Ž .4 top right .

Fig. 7. Equivalent circuit used to model impedance data of nickelrmetal
hydride cells.

Žimpedance data was taken at three SOCs 0%, 25%, and
. Ž .100% , over a wide frequency range 0.01 Hz to 1 kHz ,

every 50–100 cycles over the cycle life of the cell. These
data were modeled with the equivalent circuit shown in
Fig. 7 below.

The values of the circuit elements were presented at
each of the cycles and at each of the states of charge of the
cells. The real component of the impedance ZX and the
imaginary component of the impedance ZY can be shown
to be represented by the following equations in the fre-
quency range 0.4 Hz to 1000 Hz:

R1XZ sR qohm 2 2 21qv R C1 1

p u
uR 1qR C v cos2 2 2 ž /2

q 1Ž .2p u p u
u 21qR C v cos qsin2 2 ž / ž /2 2

v R2 C1 1YZ sy qv L2 2 21qv R C1 1

p u
R sin2 ž /2y 2Ž .2p u p u

u 21qR C v cos qsin2 2 ž / ž /2 2

In the above equations, u represents the exponent in the
Ž .uZARC-Cole impedance jv and the angular frequency v

is 2p f , where f is the applied signal frequency. The
capacitance, C , is a series capacitance included in the2

Ž .constant phase element CPE block in the equivalent
circuit of Fig. 7. At frequencies below 0.4 Hz, the

Fig. 8. C capacitance as a function of SOC and cycle number.2
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Ž . Ž .Fig. 9. a Input membership functions for the fuzzy logic model for nickelrmetal hydride cells; b Output membership function for the fuzzy logic model
for nickelrmetal hydride cells.

Žimpedance is dominated by the Warburg impedance the
.impedance associated with diffusing species and insuffi-

cient data was taken at the lower frequencies to model this
contribution to the impedance. As a result, only the data
for frequencies G0.4 Hz was used for our fuzzy logic
modeling of the data.

The first stage in the modeling of the nickelrmetal
hydride impedance data was to reproduce Weckesser’s

w ximpedance curves 22 using the circuit element values
provided in his thesis. This was achieved by solving Eqs.
Ž . Ž .1 and 2 as functions of frequency, cycle number, and
SOC. Using these equations, we were able to reproduce his

Nyquist and Bode plots. The next step was to correlate the
impedance data with the SOC and cycle number of the
nickelrmetal hydride cells. Our starting point in this re-
gard was to look first at Weckesser’s correlation between
the C capacitance and the SOC of the nickelrmetal2

hydride cell. We calculated the variation of the C capaci-2

tance as a function of frequency and as a function of cycle
number at all three SOCs for which data was available
Ž .Fig. 8 .

The fuzzy logic model of this capacitance data com-
prised a 2-input, 1-output model. The 2 inputs were the
cycle number and the C capacitance and the model output2

Fig. 10. Contour bands of equal SOC as functions of cycle number determined from the fuzzy logic model.
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was the SOC of the cell. As can be seen from Fig. 2, the
capacitance follows a monotonic variation with SOC and
cycle number between 100 cycles and 600 cycles. Below
100 cycles, the C capacitance does not vary smoothly as a2

function of cell SOC, and so our model is not applicable
for this part of the cell’s cycle life. Above 600 cycles, the
cell is essentially at the end of its useful cycle life and so
this need not be modeled. Additionally, the variation of the
C capacitance is seen to be quite non-linear as a function2

of SOC at each cycle number, making it impossible to use
look-up tables and linear interpolation schemes to model
this behavior. Our goal for the fuzzy logic model was to be
able to determine the SOC to within 10% accuracy in the
full range of useful data. The input membership functions

Ž .for the model are shown in Fig. 9 a and the output
Ž .membership function is shown in Fig. 9 b . As can be seen

from Fig. 9, there are four membership functions for the
cycle number, four membership functions for the C ca-2

pacitance, and four membership functions for the SOC.
Currently, 16 rules are being used in this model but this
can be reduced to about 12 with further optimization of the
model. Fig. 10 shows the C capacitance of Fig. 8 overlaid2

with contours of equal SOC determined from the fuzzy
logic model. As can be seen from Fig. 10, the SOC,
estimated by the fuzzy logic model, is within 10% of the
SOC for the 0%, 25%, and 100% cases. In between these
values, the model interpolates intelligently, as a human
expert would interpolate. Despite the wide fluctuation in
C capacitance and its non-linear relationship to SOC, the2

model does an excellent job of predicting the cell SOC.
This is a very exciting advance in SOC estimation of cells
and is completely independent of battery chemistry. There
is no other equally simple approach that can emulate this
level of estimation accuracy for this complex, non-linear
system.

To make a practical device to estimate the SOC of a
nickelrmetal hydride cell, the C capacitance must be2

extracted easily from the impedance data. Weckesser’s
method involved sweeping the frequency over a large
range and then using complex non-linear analysis software
to extract the circuit element parameters for the model.
This is a cumbersome way of extracting the C parameter2

Ž .Fig. 11. Plot of 1r Z at 0.4 Hz–1.12 Z at 1000 Hz against cycle number
for 0%, 25% and 100% SOC.

Ž .Fig. 12. Log impedance at 1000 Hz against cycle number for
nickelrmetal hydride cells at 0%, 25% and 100% SOC.

from the impedance data and is quite expensive to imple-
ment. If this were the only way to extract the C parame-2

ter, the application of this technique to cell SOC estimation
would be limited to only very valuable batteries, e.g., large
zincrsilver oxide cells. However, we extracted an effec-
tive C parameter from the impedance data simply by2

Žmeasuring the impedance at two frequencies at 0.4 Hz and
.at 1000 Hz . By taking the inverse of the difference of the

impedance at these two frequencies, a factor closely corre-
lating to the C capacitance is obtained. A better correla-2

Ž .tion is given by taking 1r Z at 0.4 Hz–1.12 Z at 1000 Hz
Ž .as a function of cycle number and SOC Fig. 11 . This

type of function can easily be implemented in a microcon-
troller and would, therefore, allow a relatively low-cost,
simple meter to be fabricated. Additionally, Weckesser
found that the ohmic resistance of a nickelrmetal hydride
cell varies linearly with the cycle number.

We can see this by looking at the high frequency
impedance since in this frequency range, the ohmic resis-
tance dominates the impedance of the cell. Fig. 12 shows
the log of impedance at 1000 Hz as a function of cycle
number and SOC. Clearly, above 100 cycles the impedance
for a nickelrmetal hydride cell at 1000 Hz can be used to
determine the cycle number, almost independent of the
SOC of the cell. By taking both the Z at 1000 Hz to give

Žthe cycle number and the 1r Z at 0.4 Hz–1.12 Z at 1000
.Hz to give the cell SOC, a reliable and accurate SOC

meter for nickelrmetal hydride cells becomes viable.

4. Hardware implementation

The coulomb counting procedure using a fuzzy logic
w xapproach previously described 12 has been successfully

implemented in prototype hardware. A LM35CZ tempera-
ture sensor and a 0.1 V resistor for current sensing were
interfaced via signal conditioning circuitry to the analog-

Ž .to-digital ArD converter lines of a Motorola 68HC11
microcontroller. The software developed to determine and
display the battery SOC used four modules.

The first module samples the ArD lines, acquires the
sensed current and temperature and stores them in RAM
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memory locations. The second module is the fuzzy logic
model which determines the battery discharge efficiency as
a function of current and temperature. This model was
developed using TilShell software and assembled into the
S-record HEX format required by the Motorola microcon-
troller using the AS11 assembler. The third module is a
display driver that interfaces the computer to a liquid
crystal display of battery SOC. The fourth module is a run
time module that links the other three together and calcu-
lates the present battery SOC. The hardware has been

Žtested with 1r3 C size lithiumrsulfur dioxide cells BA
.5567 and the predicted capacities have been found to

agree, within 5%, of the actual capacity.

5. Conclusions and future plans

SOC and SOH prediction has been demonstrated for
two battery systems, lithiumrsulfur dioxide and
nickelrmetal hydride, based on fuzzy logic modelling. A
prototype device has been designed and tested and imple-
mentation into commercial hardware is planned.

We plan to obtain experimental data and review litera-
ture—available data on several other battery systems and
designs. These include applications for EV, medical, and
communication devices. The systemsrdesigns to be stud-
ied include lead-acid, nickel–cadmium, nickel–metal hy-
dride, lithium-ion, and lithium–MnO .2
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